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ABSTRACT 

While the theory of compressive sensing has been very well investigated in the literature, 
comparatively little attention has been given to the issues that arise when compressive 
measurements are made in hardware. For instance, compressive measurements are always 
corrupted by detector noise. Further, the number of photons available is the same whether a 
conventional image is sensed, or multiple coded measurements are made in the same interval of 
time. Thus it is essential that the effects of noise and the constraint on the number photons must be 
taken into account in the analysis, design and implementation of a compressive imager.  In this 
paper, we present a methodology for designing a set of measurement kernels (or masks)  that 
satisfy the photon constraint and are optimum for making measurements that minimize the 
reconstruction error in the presence of noise. Our approach finds the masks one at a time, by 
determining the vector which yields the best possible measurement for reducing the reconstruction 
error. The sub-space represented by the optimized mask is removed from the signal space, and the 
process is repeated to find the next best measurement. Results of simulations are presented that 
show that the optimum masks always outperform reconstructions based on traditional feature 
measurements (such as principle components), and is also better than the conventional image in 
high noise conditions. 

Note: This is an abridged version of the previously published paper “Optimizing Measurements for Feature 
Specific Compressive Sensing” which can be found at 
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-26-6108 

1.0  INTRODUCTION 

Measurement is the physical process by which a continuous-valued signal is sampled to yield a number. Any 
such measurement can be mathematically represented as an inner product between the signal of interest x(r) 
and a measurement kernel p(r) where r is a generalized coordinate vector which could include space, time, 
and wavelength, so that the scalar measurement u = ∫x(r)p(r)dr. It is important to note that many/most 
conventional measurement systems employ a collection of “local” kernels {pi(r), i=1, ..., N}each of which 
has nonzero value only when r is within some local neighborhood of its “center.” A conventional digital 
video camera is an example of such a measurement system with each pixel generating a measurement ui 
according to a local integral in the transverse spatial dimension (i.e., the lateral resolution), the time 
dimension (i.e., the frame time), and over some contiguous set of wavelengths (i.e., the color band). It is 
well-known that images obtained in this way are highly redundant/compressible and for this reason recent 
work in the domain of compressive sensing (CS) has sought to achieve more efficient use of measurement 

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-26-6108
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resources via use of more arbitrary non-local measurement kernels. So instead of making conventional 
measurements (i.e., which may be directly consumed by a human observer) CS advocates collecting data in 
the compressed domain (i.e., in a representation that is not human-viewable) and recovering a more 
conventional image representation as a post-processing step [1-4]. Although the mathematical underpinnings 
of CS are very well understood, comparatively little attention has been given to hardware and physical 
constraints that must be addressed in practice. The CS literature generally uses the same measurement model 
described above (i.e., after appropriate discretization and signal un-rastering) in which the N-dimensional 
signal vector x is projected onto a set of kernel vectors typically arranged as the rows of the MxN 
measurement matrix Φ, to yield the M-dimensional measurement vector u = Φx. Unfortunately, much of this 
theoretical work tends to overlook important constraints associated with the measurement matrices that can 
be realized in practice and although the theoretical results are impressive, the optimum solutions may not be 
realizable in practical systems, or yield sub-optimum results when implemented in real-world hardware. 

An important constraint associated with any physical measurement system is that the quantity of light energy 
available to a passive imaging system is limited. In other words, every point in the scene has a fixed 
brightness (i.e., determined by the scene illumination and reflectance properties at that point) which gives 
rise to a fixed number of photons being collected by the measurement apparatus within a given collection 
aperture in space, time, and wavelength. Because this fixed photon budget contributes to several 
measurements, each such measurement receives only a fraction of the photons from a given point in the 
scene. Detector noise is also sometimes overlooked in the theoretical CS literature. It is inevitable that 
measurements contain noise introduced by the detection process which will impact the accuracy of the 
results. Although previous work has been reported that analyzes the impact of noise on the CS process [5,6], 
these do not explicitly deal with optimizing the measurement scheme to combat the effects of noise.  Neifeld 
and Shankar [7] were the first to formalize this model, and proposed strategies for feature specific imaging 
(FSI) using noisy measurements while imposing constraints to meet the photon budget.  They observed that 
direct feature measurement exploits the multiplex advantage, and for small numbers of projections can 
provide higher feature-fidelity than those systems that post process a conventional image. Since then, further 
development of the FSI framework has paved the way for compressive imagers that can be realized in optical 
hardware [6], and information theoretic techniques have been developed for quantifying the information 
contained in the compressive measurements for performing specific tasks [9]. The primary difference 
between traditional CS and FSI is in the nature of the sensing matrix employed. In particular, CS assumes 
sparsity in an unknown basis, and the measurements are designed to be incoherent [10]. In FSI, on the other 
hand, the sensing matrix is designed using all available prior statistical knowledge of the scene.  Either 
paradigm can be appropriate for a given situation, but if the particular exploitation task and the prior scene 
statistics are known, then the FSI paradigm can be very useful. 

Motivated by the FSI framework, we revisit the task of image reconstruction from compressive 
measurements informed by signal priors. We begin by observing that given a set of noisy measurements, the 
optimum linear operator to minimize the reconstruction mean square error (MSE) is well known [11]. It is 
also important to observe that when second order signal statistics are available, the principle component 
analysis (PCA) features are known to be optimal for image reconstruction in a minimum mean square error 
(MMSE) sense [12]. Thus, it may be tempting to make measurements using PCA projections and then using 
the LMMSE operator to reconstruct images; however, this approach would be sub-optimal even in the 
LMMSE sense. The key insight here is that the derivation of the PCA projections does not take into account 
the effect of measurement noise.  In fact, it has been shown previously [9] that the PCA is indeed sub-
optimal under high noise conditions, and that the optimum measurement kernels are binary-valued. In this 
paper, our goal is to systematically determine the projections which are optimum for making measurements 
such that the effect of noise on the reconstructed imagery is minimized, subject to the finite photon budget.  

The rest of the paper is organized as follows.  In Section 2, we present a strategy for mask optimization that 
takes noise and the photon constraint into account. Assuming a linear MMSE reconstruction model and prior 
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information based on second order statistics, we show that the optimum masks are binary-valued in high 
noise conditions, but converge to the PCA vectors when noise is absent. For a given signal to noise ratio 
(SNR), the algorithm sequentially determines one optimum mask at a time, removes its contribution from the 
signal space, and then iterates to find additional masks until the reconstruction error is acceptably small. The 
results of simulation are presented in Section3. We find that when SNR is low, the optimized masks not only 
outperform the PCA, but also yield better results than a conventional imager. Under these conditions, FSI 
with optimum masks yields a smaller MSE than either the reconstruction obtained with PCA masks or a 
conventional noisy image at comparable SNR.  In high SNR conditions, the reconstruction accuracy of the 
optimum masks is always equal or better than that of the PCA for any given number of measurements. Thus, 
in addition to ensuring that the photon constraint is satisfied, the optimization technique described in Section 
2 enables the masks to achieve robust performance in noise without adversely affecting the reconstruction 
MSE. Although our analysis assumes that the noise is independent of the signal, this is not the case when 
Poisson noise is present.   While a formal treatment of the effects of signal dependent noise is beyond the 
scope of the paper, we compare the behavior of optimized masks perform to the normalized PCA  in signal 
dependent noise. Section 4 is a summary of the findings of the paper, and suggestions for direction for future 
work. 

2.0  SYSTEM DESCRIPTION AND MASK OPTIMIZATION  

Before discussing the procedure for optimizing the measurement kernels, we briefly review the architecture 
of a single pixel compressive sensor  [4] so that its implications on the optimization framework are 
understood. Assume that we wish to compute the quantity , where x(m,n) is an 
image of a scene, and φ(m,n) is the measurement kernel (interchangeably referred to as a mask), and  m and n 
are the discrete spatial indices. As shown in Figure 1, this operation can be optically implemented by 
imaging the scene on a spatial light modulator, and collecting the modulated light on a photo-detector. The 
SLM is either a transmissive or reflective device which is encoded with the mask pattern φ(m,n).  The light 
emerging from the SLM is proportional to the product , and is collected by the integrating 
lens on the photo-detector.  Effectively, the current measured at the output of the photo-detector is  
proportional to u.  

Since real world SLMs can only implement non-negative masks, the values of  must range between 
0 and 1, and represent the fraction of the light that is transmitted by the mask at each spatial location.  On the 
other hand, the performance of a mask that contain both positive and negative values may be better than 
those which are strictly positive. To  handle the negative values, the mask   can be expressed in terms of two 
non-negative quantities, i.e, 

- , 

where 

=  

and 

=  

and the final result can be obtained by subtracting a partial measurement made using  from 
another obtained using .  The optimization technique described in this paper can be formulated to 



Task Specific Compressive Sensing for Target Detection 

     

21 - 4 STO-MP-SET-265 

yield both non-negative or real-valued masks. 
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Objective
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Figure 1: Basic architecture of a single pixel compressive sensor which integrates the light from 
the scene, modulated by codes written on the SLM 

The noise characteristics of a photo-detector depends on the type of device and the wavelength of the light. 
In particular, we are interested in detectors that operate in the mid-wave infra-red. Cooled sensors are much 
more sensitive and exhibit relatively low levels of noise that has  predominantly signal dependent  Poisson 
characteristics. Thus cooled detectors provide significantly higher signal to noise ratios in many applications, 
and the impact of noise on CS measurements is less severe. On the other hand, uncooled sensors (such as 
Lead Selenide detectors [13]) are relatively inexpensive, but are also substantially more noisy. In such cases, 
the dominant noise is pink noise (also known as 1/f  noise) which does not depend on the signal, and can be 
modeled as an additive process. The analysis presented in this paper deals with impact of such signal 
independent additive noise on compressive measurements, and is motivated by the goal of using inexpensive 
infra-red detectors in compressive sensors.  

 2.1 Mathematical Framework  
For the sake of brevity, we omit the detailed mathematical formulation and treatment of the problem which 
can be found in the published version at “https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-26-
6108” 

3.0  RESULTS OF SIMULATION 

A database of thermal images of six different types of vehicular targets, some of which are shown in Figure 
2, was used to create the noise optimized masks for feature specific imaging.  It should be noted that such 
thermal images in the long wave infra red spectrum have relatively low spatial frequency content, and the 
information contained in the pixels is often redundant. Our goal is to examine the results of FSI using far 
fewer measurement than the number of conventional pixels contained in these image. The images are of size 
20 x 40 pixels, and consequently the target correlation matrix  estimated from these images is of size 800 
x 800.   Since the location of the target in the scene is assumed to be unknown, all possible shifted versions 
the targets (within the 20 x 40 window) was also included in the estimation of . 

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-26-6108
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-26-6108
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Figure 2: Typical images used for estimating target statistics 

To compare the results of compressive sensing and reconstruction to that of a conventional imaging sensor,  
we define a SNR in terms of the signal and the detector noise in a conventional camera. Assume that the 
ideal image x obtained using a conventional imager is corrupted by detector noise that is zero mean AWGN 
with standard deviation .   If  and   represent the maximum and minimum signal amplitudes, 
then the signal to noise ratio (SNR) is defined as . Once  is determined, the same 
noise level is used for making the compressive measurements, and for assessing the performance of the 
masks. For illustrative purposes, a conventional image of a target with no noise is shown in Figure 3, along 
with versions of the same image corrupted by noise at SNR values of 5, 30, and 90. For the purposes of our 
analysis, these are considered to be the high, moderate, and low noise cases, respectively.  
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Figure 3: Conventional images of a target for various noise levels: a) no noise, b) SNR=5, c) 
SNR=30, and d) SNR = 90. 
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Figure 4: The masks in the top three rows are optimized for SNR values of 5, 30, and 90 
respectively. The PCA masks are shown in the bottom row. Note that the masks appear to be 

almost binary valued for SNR=5 (high noise) and essentially the same as the PCA for  SNR=90 
(low noise). 

We created three sets of masks optimized for various SNR values of 5, 30 and 90 using the algorithm 
described in Section 2.  The first five masks for each case are shown in Figure 4, along with the masks based 
on the PCA vectors. It is interesting to note that for the low SNR of 5 (high noise case), the optimum masks 
are practically binary valued. At the moderate SNR of 30, the masks are more saturated than the PCA, but 
also exhibit some fractional gray values. However, at high SNR of 90 (low noise case), the masks appear to 
be essentially the same as the PCA vectors. 

The logarithm of the reconstruction MSE obtained using these masks for the high noise case is shown in 
Figure 5. Here,  was chosen to yield an SNR of 5, and the MSE in Eq. (5) is plotted for different numbers 
of measurements.   In all cases, the MSE is reduced as the number of measurements is increased. It is clear 
that the masks optimized to handle the high noise case perform the best and always yield the smallest MSE. 
On the other hand, the normalized PCA yields the worst performances, as expected. It is also noteworthy that 
the masks optimized for moderate and low noise cases also outperform the normalized PCA, although to a 
lesser extent. Hence, even if the masks are optimized for SNR values that are different from the actual noise 
level, their performance is better than that of the normalized PCA when the measurements are corrupted by 
noise. 
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Figure 5: In high noise, the masks optimized for an SNR of 5 yield the smallest MSE. Masks 
optimized for moderate and high SNR also perform better than the PCA. 

Figure 6: In moderate noise (a), the mask optimized for SNR=30 yields the best performance as 
the number of features is increased, while the PCA yields highest MSE. For SNR = 90 (b), (i.e. in 

low noise) the performance of all sets of masks is comparable. 
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The performance of the masks in moderate and low noise levels are shown in Figures 6(a) and 6(b), 
respectively. In Figure 6(a),  is chosen to correspond to an SNR of 30. Although all sets perform 
comparably with the few initial measurements, we see that as the number of features increases, the set 
optimized for moderate noise level (i.e. for SNR=30) outperforms the others. Not surprisingly, the 
normalized PCA produces the largest MSE as the number of measurements is increased. In low noise 
conditions, the performance of all masks is comparable to the PCA, as shown in Figure 6(b). This implies 
that the optimization algorithm does not produce any appreciable loss of performance in the absence of 
noise, but yet provides considerable improvements when noise is present in the measurements. 

We now discuss the effect of imposing a photon constraint on the measurements made using the optimized 
masks. In infra-red (IR) systems, the integration time of the detector determines the number of photons 
collected over that time interval.  The plots shown in Figure 5 and 6 assume that the same integration time is 
used for every measurement. This implies that as the number of masks increases, more photons are utilized 
in the final reconstruction result.  Whether this is feasible depends on the design of the imaging system. For 
example, if a final frame rate of no more than 10 Hz is desired using a integration time of a millisecond per 
measurement, then up to 100 masks can be used for reconstructing each image frame. In this scenario, 
images reconstructed with fewer measurements essentially receive less photons, and the time required for 
making all the measurements depends on the number of masks to be used.   

On the other hand, if all measurements must be made within a fixed interval of time, then the integration 
time for each measurement depends on the number of masks to be employed. Essentially, this ensures that 
the number of photons utilized for reconstructing a complete image is always the same. The effect of 
reducing the integration time for each mask can be treated as a multiplicative scale factor applied to the 
corresponding measurement prior to adding noise.  Therefore, if N measurements are used to reconstruct an 
image, noise with the same standard deviation  (determined as before based on the SNR of a conventional 
image) is added to each measurement  scaled by 1/N. Figure 7 shows the effect of imposing this photon 
constraint on the behavior of the reconstruction MSE for the high noise case (SNR=5). Under these 
circumstance, we see that the MSE initially decreases as more masks are used until a minimum value is 
achieved for 17 measurements. This occurs as long as additional measurements contain more signal 
information than noise. After that, the MSE starts to increase when more measurements are included since 
these introduce more noise than useful signal information. It is noteworthy that in Figure 7, the masks 
optimized for high noise (i.e. the plot indicated with the '+' symbol) outperforms the PCA (solid line) and 
other masks. This set not only provides  a smaller MSE at any number of measurements, but also achieves 
the smallest overall MSE, and hence provides the best possible reconstruction. The results for the moderate 
and low noise cases are shown in Figure 8. Here, the mask optimized for SNR=30 yields the smallest 
reconstruction MSE in moderate noise  using 85 measurements as shown in Figure 8(a).  For SNR=90 there 
is no appreciable difference between the performance of the masks as shown in Figure 8(b). After comparing 
these results to those obtained earlier in Figures 5 and 6, we  conclude that although the photon constraint 
impacts the behavior of the MSE as the number of measurements is increased, the best results for a given 
SNR is obtained using the masks that were optimized for that noise level.  It should be noted that if two 
measurements are made for every mask (to account for +/- values) based on architectural considerations, 
then the integration time for each measurement is reduced by a factor of 2, which in turn reduces the 
measurement SNR. Although this results in a larger MSE for all masks, the overall trends shown in Figures 7 
and 8, and our conclusions remain the same.  
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Figure 7. When a photon constraint is imposed by limiting the integration time allocated to each 
mask, the MSE intially decreases but then increases again as more noisy measurements are 

included.  In high noise conditions, the best results are obtained using the masks optimized for 
SNR=5, although the mask optimized for low and medium SNR still outperform the PCA. 
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Figure 8: Under the photon constraint at an SNR =30, the mask optimized for moderate noise 
yields the best result, compared to the PCA and the masks optimized for other noise levels, as 
shown in (a). In low noise conditions (SNR=90), there is no appreciable difference between any 

of the masks, as shown in (b). 

Although the masks have been optimized for signal independent noise, we now examine their behavior in 
noise that has a signal dependent component. Towards this end, Eq (1) is modified so that the measurement 
obtained with  the mask  is given by ,  where the term  represents a zero mean signal 
dependent noise with standard deviation , and  is the signal independent noise process (as 
before) with standard  deviation .  Thus,  is proportional to the square root of the magnitude of the 
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projection of the signal on the mask. We chose the constant  such that  when  is the first mask, 
and is left unchanged for all other masks.  

The experiment described in Figure 7 is repeated using the modified noise model, and the results are shown 
in Figure 9. While the minimum MSE is somewhat greater for all masks, their behavior differs significantly 
as the number of measurements is increased.  The masks optimized for higher levels of noise exhibit a 
relatively smaller growth in MSE as the number of measurements is increased. For instance in Figure 9, the 
normalized PCA achieves the minimum log(MSE) of 19.25 for about ten measurements, whereas the mask 
optimized for SNR=5 achieves an even smaller minimum log(MSE) of 19.1 with about 13 measurements. It 
is clear from these results that the masks designed to minimize MSE in signal independent noise continue to 
perform better than the normalized PCA, even when signal dependent noise is present. 
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Figure 9: The masks designed to minimize MSE in signal independent noise continue to perform 
better than the normalized PCA, even when signal dependent noise is present. 

For visual comparison, several examples of reconstructed and conventional images are  shown in the table in 
Figure 10 for different noise levels.  For each case, we also note the MSE with respect to the noise-free ideal 
image, as well as the effective compression ratio (i.e. the ratio between the number of pixels in the image, 
and the number of measurements that were used to obtain the reconstruction).  Under very noisy conditions 
at SNR=5, the optimized masks yields the smallest MSE (20.15) outperforming both the PCA (MSE=28.8)  
as well as a conventional imager (MSE=26.2). Additionally, only 17 measurements were used to obtain this 
result, which represents a compression ratio of 47. The reconstruction using the optimized masks has the best 
visual quality; the reconstruction using the PCA does not resemble the original object, and the conventional 
image appears to be very noisy. 
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In moderate noise (SNR=30), the optimized masks (MSE=11.1) still outperform the PCA (MSE=14.6). 
Although the conventional image has a lower MSE, the reconstruction using the optimized mask and the 
PCA provide a compression ratio of 9.4. The shape of the target obtained with the optimized masks is 
visually comparable to the ideal image, whereas the PCA based reconstruction appears more distorted. The 
target can be clearly seen in the traditional image albeit the noise is also visually evident. Finally, in low 
noise conditions, very comparable results are obtained using both the optimized masks (MSE=4.61) and the 
PCA masks (MSE=4.62). Both exhibit a slightly larger MSE than the conventional image (MSE=1.5), 
mainly because of the compressive nature of the measurements (compression ratio=8).  
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Figure 10: The results of reconstructing the ideal image in Figure 3(a) using  noisy feature 
specific measurements (using the optimized mask and masks based on the PCA) are compared 
to the conventional image at the same SNR. The results show that the optimized masks always 
outperform the PCA by yielding a smaller MSE at the same compression ratio. The results are 

also better than the conventional image in high noise, and visually comparable to the 
conventional image in moderate and low noise conditions. In these cases, reconstruction based 

on FSI exhibit a residual MSE due to the compressive nature of the measurements. 

4.0  SUMMARY 

While the theory of compressive sensing has been very well investigated in the literature, comparatively little 
attention has been given to the issues that arise when compressive measurements are made in hardware. For 
instance, compressive measurements are corrupted by detector noise. Further, the number of photons 
available is the same whether a conventional image is sensed, or multiple coded measurements are made in 
the same interval of time. Thus it is essential that the effects of noise and the constraint on the number 
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photons must be taken into account in the analysis, design and implementation of a compressive imager.  

Feature specific imaging (FSI) is a form of compressive sensing where the measurement kernels are not 
random, but are based on prior knowledge of the information we are interested in sensing. Working in this 
FSI framework, we have developed a methodology for designing a set of masks  that satisfy the photon 
constraint and are optimum for making measurements that minimize the reconstruction MSE in the presence 
of noise. The measurement matrix is obtained by arranging these masks as its rows. A criteria for meeting 
the photon constraint is that the maximum L1 norm of the columns of the measurement matrix is less than or 
equal to 1.0. To simplify the optimization process, we employed an analytical mapping that ensures the 
masks can take on any value between  and formulated a quadratic objective function that can be 
minimized using gradient descent. The process then finds the mask one at a time, by determining the vector 
which yields the best possible measurement for reducing the MSE. The sub-space represented by the 
optimized mask is removed from the signal space, and the process is repeated to find the next best 
measurement. 

Of course, the primary reason for compressive sensing is to make fewer measurements than the number of 
pixels in the reconstructed image, and to collect the information more efficiently than a conventional image. 
One might intuitively expect that utilizing more features (or measurements) in the reconstruction process will 
yield a smaller reconstruction error.   We demonstrated however that the photon constraint limits the number 
of masks that can be used at a particular SNR to reduce the reconstruction MSE. In noisy conditions, MSE 
initially decreases as the number of measurements is increased, but then increases when  measurements that  
contain more noise than signal information are included. The simulations showed that the optimum masks 
always outperforms masks based on the PCA vectors, and also yield a smaller MSE than the conventional 
image in high noise conditions.  Although a formal treatment of the effects of signal dependent noise is 
beyond the scope of the paper, we found that the optimized masks perform better than the normalized PCA, 
even in signal dependent noise. 

Future work will focus on extending the optimization algorithm so that multiple masks are jointly optimized 
subject to the photon constraint, rather than one at a time. Other types of noise models will be also 
considered such as signal dependent shot noise. This material is based upon work supported by DARPA and 
the SPAWAR System Center Pacific under Contract No. N66001-11-C-4092. The views expressed are those 
of the author and do not reflect the official policy or position of the Department of Defense or the U.S. 
Government. 
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